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Abstract:

The Five-Axis Mount (FAM) is used at MSFC's X-ray Calibration Facility (XRCF) to move the SIM as though it were rigidly 
attached to the HRMA. The FAM is given an effective focal length and commanded to go to the HRMA's azimuth and 
elevation field angles; the FAM must calculate the three axis displacements of each of its three feet. The order may be reversed
- i.e. given the feet displacements, the equivalent field angle (pair) may be calculated, as long as the actual feet displacements 
are close to the commanded feet displacements.

This SER details the mathematical procedure for mapping field angles into the three feet displacements and vv., given the three
feet locations and taking into account non-orthogonal displacements in each of the three feet. Regrettably, non-orthogonalities 
(and installation alignments) matter, at least in the case of large movements in Y or Z that can cause defocus in X.  

Simplified expressions are given that ignore non-orthogonalities. These expressions are useful at FAM checkout and 
acceptance test time. Given too are mathematics and procedures for measuring feet displacement non-orthogonalities. The 
procedures make use of an alignment cube mounted on the SIM simulator, two theodolites, a flat, and a folding mirror. While 
an interferometer provides some distinct advantages (and disadvantages), this setup can also be used at FAM acceptance test 
time to observe FAM resolutions, repeatabilities, stabilities and settling times. 

Establishment of the FAM coordinate frame is described, making use of a 2" precision cube mounted at the SI origin on the 
SIM simulator. The optical installation and alignment of the FAM at XRCF is described, making use of a second alignment 
cube mounted on the FAM rear rail and parallel to the cube on the SIM simulator.

FAM encoder and motor gains are discussed. 



Nomenclature:

Bold face is used to indicate vectors and matrices, e.g. TAx and R54. Non-bold face is used for scalars.  Mij denotes the matrix

element on the i th  row and j th column. Vi denotes the i th element of a vector. [V1,V2,V3,...] is a column vector, 

[V1,V2,V3,...]T is a row vector. • is the matrix multiplication operator. 

HRMA to focal plane geometry:

Figure 1 shows the HRMA and focal plane geometry.
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Figure 1. HRMA and focal plane geometry.

F1 (i.e. unit vectors x1,y1,z1) is coordinate frame #1, the SI focal plane. F1's orientation is optically established by XRCF. Its 
origin O1 is where HRMA images appear for sources on the Facility Optical Axis (FOA), i.e. on x1. f is the effective HRMA 
focal length, the radius of the spherical surface that off-axis images appear on. y is the HRMA field "elevation" angle, 

defined + for right-hand rotations about the +y axis, and z the HRMA field "azimuth" angle, defined + for right-hand 

rotations about the +z axis.

 If  = [x ,y ,z ]T are the required SI rotations about x1, y1 and z1 respectively, and S = [S1x,S1y,S1z ]T the 

required SI translations in the x1,y1,z1 direction respectively (all angular and linear distances measured from their "boresight" 
position), then

Eq. 1a z = z
Eq. 1b y = y
Eq. 1c x = any SI "roll" required at installation time only

Eq. 1c S fx z y1 1 2 2  cos   
Eq. 1d S1y= -f sin z 

Eq. 1e S1z= f sin y 

 
 is the "SI angular coordinate", and  S1 the "SI linear coordinate". Since f is about 10m, and y and z about 0.5 degrees 

max, the max required values for S1x,S1y,S1z are about 0.8 mm, 90 mm, and 90 mm resp.



FAM stationary coordinate frame and non-orthogonality:

Figure 2 shows coordinate frame F3 = [x3,y3,z3] , associated with the stationary structure of the FAM at boresight. Its origin is
coincident with F1's. F3 is nominally parallel to F1, but need not be precisely so. R32 depends on the attitude of an optical 
cube affixed to the FAM used to optically define F3, and on the installation attitude of the FAM itself on the optical bench at 
XRCF. F3 is made by rotating F1 by matrix R32. If P1 is the coordinate of any point in F1, then its coordinate in F3 is 

Eq. 2 P3 = R32 • P1
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Figure 2. The FAM at boresight, its stationary coordinate frame F3 = [x3,y3,z3], and its three feet locations in F3 -  A03,B03 
and C03.

The intersection of the FAM payload nterface plane with the FOA, i.e. the center of the FAM aperture (about 66" above the 
table on which the FAM rests),  is 28.5 (spec'd) + 2.0 (thickness of OBA simulator used to attach SIM to FAM) = 30.5 inches 
in the +x1 direction from O1.

 A "foot" defined to be the location of the 3-axis rotational pivot, assumed herein to be a single point, the coincident 
intersection of all three axes of rotation.

Figure 3 shows the directions a foot A,B or C moves when driven (or following) in x,y or z. All directions are measured in the 
FAM frame F3. Note that each foot can move in a slightly different direction in each of three axes. Each unit vector has three 

components, e.g. TAx = [TAxx, TAxy, TAxz]T. All the vectors are close to their respective axes, so that TAx  [1, TAxy, 

TAxz]T,TAy  [ TAyx,1, TAyz]T, TAz  [ TAzx, TAzy , 1]T, etc.
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Figure 3. The translation vectors for the three feet A,B and C in each of three directions x3,y3 and z3.



FAM and SI moving coordinate frames:

FAM frame F4 is made by translating F3's origin distance v3, as shown in Figure 4.
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Figure 4. Translating and rotating the FAM.

FAM frame F5 is made by rotating F4 by matrix R54. If P3 is the coordinate of any point in F3, then its coordinate in F5 is 

Eq. 3 P5 = R54 • (P3-v3).

Similarly, SI frame F6 is made by translating F1's origin distance S1, as shown in Figure 5.
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Figure 5. Translating and rotating the SIs.

SI frame F7 is made by rotating F6 by matrix R76. If P1 is the coordinate of any point in F1, then its coordinate in F7 is 

Eq. 4 P7 = R76 • (P1-S1). 

Since x ,y ,z are small, the order of rotation is unimportant, and the rotation matrix R76 is,  from Wertz, Spacecraft 

Attitude Determination and Control, pg. 764

[  z y 

Eq. 5a R76 = E321(zyx z + xy 1 + xyz x 

[ xz + y xzy  

where x ,y ,z are in radians. Further, ignoring the cross terms due to small angles yields

[  z y 

Eq. 5b R76 = E321(zyx z 1 x 

[ y x  

Note that since the SIs are rigidly tied to the FAM, F7 has the same relationship to F5 that F1 does to F3. Thus if

Eq. 6a P3 = R32 • P1    ( this is Eq. 2), then also
Eq. 6b P5 = R32 • P7 .



Substituting from Eqs 2, 3 and 4 into Eq. 6b, and remembering that the inverse of any rotation matrix is simply its transpose, 

Eq. 7 P3 - v3 = R54T • (Ra • P3 - Va) , where 

Eq. 7a Ra = R32 • R76 • R32T  and
Eq. 7b Va = R32 • R76 • S1

Since Eq. 7 must be true for any and all P3s, choosing P3 = 0 turns Eq. 7 into

Eq. 8a v3 = R54T • Va , and substituting this back into Eq. 7 yields

Eq. 8b R54T • Ra • P3 = P3

Since Eq. 8b must also be true for any and all P3s, 

Eq. 9a R54 = Ra =  R32 • R76 • R32T ; if F3 is nearly parallel to F1
Eq. 9b R54  R76 . Substituting Eq. 9a back into Eq. 8a yields
Eq. 9c v3 = R32 •  S1

These two equations describe the rotation and translation the FAM frame F3 must make to move the SIs to the required 
coordinates R76 (i.e. 1) and S1. 

Finding commanded feet displacements from a commanded HRMA angle:

Next we find the linear displacements the feet must make A3,B3,C3 to accomplish to move the SIs to the required 
coordinates R76 (i.e. 1) and S1. After the FAM rotates and translates from boresight, from Eq. 3 the new coordinate of foot 
A,B,C in frame F3 is

Eq. 10a A3 = R54T • A03 + v3

Eq. 10b B3 = R54T • B03 + v3

Eq. 10c C3 = R54T • C03 + v3

The distance foot A,B,C moves from its boresight location in frame F3 is

Eq. 11a A3 = A3 - A03 = ( R54T - I ) • A03 + v3

Eq. 11b B3 = B3 - B03 = ( R54T - I ) • B03 + v3

Eq. 11c C3 = C3 - C03 = ( R54T - I ) • C03 + v3, where I is the 3x3 identity matrix.

But the feet actually move in non-orthogonal directions to F3. Thus

Eq. 12a A3 = uAx • TAx + uAy • TAy + uAz • TAz
Eq. 12b B3 = uBx • TBx + uBy • TBy + uBz • TBz
Eq. 12c C3 = uCx • TCx + uCy • TCy + uCz • TCz

where uA = [uAx,uAy,uAz ]T are the motor displacements for foot A along directions TAx,TAy,TAz resp., and similarly for 
feet B and C.  TBxy ,TBzy ,TCxy , TCyz , TCzx ,TCzy may be set to zero, since they only direct motion into a floating 

direction. 

Eq. 12 can be rewritten

Eq. 13a A3= TA • uA
Eq. 13b 3= TB • uB
Eq. 13c C3= TC • uC, where as good approximations

[1 TAyx TAzx ]



Eq. 14a TA = [TAxy 1 TAzy ]

[TAxz TAyz 1 ]

[1 TByx TBzx ]

Eq. 14b TB = [0 1 0 ]
[TBxz TByz 1 ]

[1  0 0 ]
Eq. 14c TC = [0 1 0 ]

[TCxz  TCyz 1 ]

The motor displacements uA,uB,uC can be found with

Eq. 15a uA = TA-1 • A3

Eq. 15b uB = TB-1 • 3

Eq. 15c uC = TC-1 • C3

TA-1 , TB-1 , and TC-1 need only be found once, a result of non-orthogonality measurements. As a good approximation,

[1 -TAyx -TAzx ]

Eq. 16a TA-1 = [-TAxy 1 -TAzy ]

[-TAxz -TAyz 1 ]

[1 -TByx -TBzx ]

Eq. 16b TB-1 = [0 1 0 ]
[-TBxz -TByz 1 ]

[1  0 0 ]

Eq. 16c TC-1 = [0  1 0 ]
[-TCxz -TCyz  1 ]

Figure 6 shows the calculation sequence.
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Figure 6. The sequence of calculations for finding commanded feet displacements from a commanded HRMA angle.



Simplified expressions for finding commanded feet displacements, ignoring XRCF, with no non-orthogonalities:

Set R32 = I; this aligns the FAM to XRCF, or in effect ignores the prescence of XRCF. This is useful for FAM tests and 
calibrations that are conducted externally to XRCF. Further, set TA = TB = TC = I ; this declares "no non-orthogonalities", 
useful at FAM acceptance test time where non-orthogonalities are not inspected. Then Eq. 13 becomes

Eq. 24a uA =   ( R76T - I ) • A03 + S1

Eq. 24b uB =   ( R76T - I ) • B03 + S1

Eq. 24c uC =   ( R76T - I ) • C03 + S1

Simplify the nomenclature by defining azimuth angle a = z , elevation angle e = y , and roll angle r = x , defocus vx = 

S1x , horizontal translation vy = S1y , and vertical translation vz = S1z . Also drop the appendage "3" to denote F3 and "0" to 

denote nominal position, so that A,B,C = A03,B03,C03. Then from Eq. 5b

[ 0 a e 

Eq. 25 R76T - I  =  a 0 r 
[ -e r  

and dropping the uBy , uCx , uCy terms since they "float",

Eq. 26a uAx =   -a  •  Ay +  e  •  Az + vx
Eq. 26b uAy =   a  •  Ax -  r  •  Az + vy
Eq. 26c uAz =   -e  •  Ax +  r  •  Ay + vz
Eq. 26d uBx =   -a  •  By +  e  •  Bz + vx
Eq. 26e uBz =   -e  •  Bx +  r  •  By + vz
Eq. 26f uCz =   -e  •  Cx +  r  •  Cy + vz

where all angles are in radians.

Finding actual HRMA angles from actual feet displacements:

This procedure assumes that actual feet positions are close to commanded feet positions. It uses an incremental technique that 
permits one to ignore non-orthogonalities and coordinate frame misalignments. Thus the simplified equations developed above
may be used.

Eq. 26 can be restated in matrix form

[uAx ] = [ -Ay Az 0 1 0 0] [a ]

[uAy ] = [ Ax 0 -Az 0 1 0] [e ]

Eq. 27a [uAz ] = [ 0 -Ax Ay 0 0 1] [r ]

[uBx ] = [ -By Bz 0 1 0 0] [vx ]

[uBz ] = [ 0 -Bx By 0 0 1] [vy ]

[uCz ] = [ 0 -Cx Cy 0 0 1] [vz ] , or we define

Eq. 27b u6 = M66 • s6.  Then 

Eq. 28 s6 = M66-1 • u6

The actual SI location S1x , S1y , S1z  is the commanded S1x , S1y , S1z   plus the correction s64 , s65 , s66 = vx , vy , vz 

obtained from Eq. 28, when M66 represents the nominal (i.e. boresight or home) feet positions, and u6 represents the 



difference between the actual feet positions and the commanded feet positions. M66-1 need only be computed once. Small 
changes in SI angles x , y , z = s61 , s62 , s63 = a,e,r can be ignored from the HRMA's point of view. 

As an example, suppose A = A03 = [-1,1,-1]T, B = B03 = [-1,-1,-1]T, C = C03 = [1,0,-1]T. Then M66-1 is 

     uAx       uAy     uAz    uBx    uBz     uCx
a  [   -0.50     0.00     0.00     0.50     0.00     0.00]
e  [    0.00     0.00     0.25     0.00     0.25    -0.50]
r  [    0.00     0.00     0.50     0.00    -0.50     0.00]
vx  [    0.50     0.00     0.25     0.50     0.25    -0.50]

vy  [   -0.50      1.0    -0.50     0.50     0.50     0.00]

vz  [    0.00     0.00     0.25     0.00     0.25     0.50]

Finally, find the equivalent HRMA angles from Eq. 1d and e and the corrected S1

Eq. 30a z =  sin -1 ( -S1y / f  )

Eq. 30b y =  sin -1 ( S1z / f  )

 
Figure 7 shows the sequence of calculations.
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Figure 7. The sequence of calculations for finding actual HRMA angles from actual feet displacements.

Mathematics of measuring FAM non-orthogonalities:

All the 12 critical components of  TA, TB and TC may be found by simultaneously observing the rotation (a,e,r) and 
translation (vx,vy,vz) of the alignment cube on the SIM simulator at the FAM origin in response to translations of the three 

FAM feet together in the three directions x, y and z. 

Starting at home, first the Ay actuator is moved a large distance uAy/2 in the -y direction, and the three angular (a1,e1,r1) and 

three linear (v1x,v1y,v1z) coordinates of the cube noted. Then the Ay actuator is moved distance uAy in the +y direction, and 

the final three angular (a2,e2,r2) and three linear (v2x,v2y,v2z) coordinates of the cube noted. Using the definitions of Eq. 27, 

the net cube movement is s6 = [a,e,r,vx,vy,vz]T = [a2,e2,r2,v2x,v2y,v2z]
T - [a1,e1,r1,v1x,v1y,v1z]

T . The FAM essentially 

only translates - any rotation is due to non-parallelism of rails between the feet. 

From Eq. 13, feet A,B,C move distance

Eq. 51a Ax = TAyx • uAy
Eq. 51b Ay = TAyy • uAy



Eq. 51c Az = TAyz • uAy
Eq. 51d Ax = TByx • uAy
Eq. 51e Bz = TByz • uAy
Eq. 51f Cz = TCyz • uAy

Some of these relationships are approximations that ignore second order terms arising from slightly different translation 
vectors between a pair of feet. Define

Eq. 52 ABC6 = [Ax , Ay , Az , Bx , Bz , Cz ]T 

Eq. 27b can be modified to include non-orthogonalities to read

Eq. 53 ABC6 = M66 • s6

Thus by observing s6, ABC6 can be found, and since uAy is known, the set TAyx, TAyy, TAyz, TByx, TByz, TCyz may be 

found from Eq. 51. As a check, TAyy should be near unity.

This procedure for translating y motion is repeated a second time, but in the x direction. Both A and B feet must be moved 
nominally the same distance uAx = uBx . Feet A,B,C move distance

Eq. 54a Ax = TAxx • uAx
Eq. 54b Ay = TAxy • uAx
Eq. 54c Az = TAxz • uAx
Eq. 54d Ax = TBxx • uAx
Eq. 54e Bz = TBxz • uAx
Eq. 54f Cz = TCxz • uAx

A second s6 is observed, a second  ABC6 calculated, and the set TAxx, TAxy, TAxz, TBxx, TBxz, TCxz may be found from

Eq. 54. As a check, TAxx and TBxx should be near unity.

Finally, this procedure is repeated a third time for translating z motion. All feet,  A, B and C,  must be moved nominally the 
same distance uAz = uBz= uCz . Feet A,B,C move distance

Eq. 55a Ax = TAzx • uAz
Eq. 55b Ay = TAzy • uAz
Eq. 55c Az = TAzz • uAz
Eq. 55d Ax = TBzx • uAz
Eq. 55e Bz = TBzz • uAz
Eq. 55f Cz = TCzz • uAz

A third s6 is observed, a third  ABC6 calculated, and the set TAzx, TAzy, TAzz, TBzx, TBzz, TCzz may be found from Eq. 

55. As a check, TAzz , TBzz and TCzz should be near unity.

Measuring stage encoder and motor gains:

There are six translation stage encoders, one each for the Ax, Ay, Az, Bx, Bz and Cz actuators. They are considered to measure
motion along the TAx,TAy,TAz,TBx,TBz,TCz directions, i.e. along the actual directions of motion, not the ideal ones. They 
must be installed parallel ( < 0.5 °, TBR) to the stage rails, so that any cos reduction ( < 40 ppm, TBR) in apparent gain can 



be ignored. If this criteria cannot be met, the apparent gains must be measured (along the actual directions of motion) , a 
subject not further discussed herein.

The encoders are glass scale devices that have nominally the same calibrations:  a published gain K0e µm/counts at a specified 
temperature T0, and a published temperature coefficient dKedT in µm/counts-degC . At XRCF time, all the encoders are at 
about the same temperature T (near 10 °C) , so that all the encoders will have the same gain Ke = Ke0 + (T-T0) • dKedT. 
However, in the interest of generality , a separate Ke is kept for each encoder.

There are six translation stage motors, one each for the Ax, Ay, Az, Bx, Bz and Cz actuators. They are considered to drive 
motion along the TAx,TAy,TAz,TBx,TBz,TCz directions, i.e. along the actual directions of motion. They are stepping motor 
(and worm gear, in the z direction) and lead screw arrangements. Their gains Km µm/microstep can be found from published 
specifications for the motion train components. A separate gain Km is kept, in general, for each motor. 

Certainly, Ke and Km must agree. This amounts to calibrating Ke against Km if there is more confidence in lead screw pitch. 
If there is more confidence in encoder alignment, it amounts to calibrating Km against Ke. This subject is not further addressed
herein.

Establishing the FAM coordinate frame F3:

Figure 8 shows an alignment cube with its center at the SI origin. The 2" cube has all faces orthogonal within ±10 arcsec 
(TBR). It is mounted on the ISIM simulator, in turn mounted on the OBA simulator, in turn mounted to the FAM payload 
interface. With the FAM at home, the faces are nominally parallel to directions of motion at the feet. If the feet motion 
directions are in turn nominally parallel to the XRCF coordinate frame, the cube's face will be nominally parallel to F1. 
Ideally, a clear aperture will be visible on each of the six cube faces from outside the FAM structure.
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Figure 8. The FAM alignment cube at the SI origin, and a second cube on the rear foot rail.

Since the SIM itself, rather than the SIM simulator, is mounted on the FAM at the time the FAM is installed at XRCF, a second
cube (or set of polished surfaces) is required on the stationary FAM structure. The rail that connects the two rear feet is the best
candidate. The faces of the second cube are nominally parallel to the primary cube; both must be surveyed to establish an 
attitude between them. 



Installing and aligning the FAM at XRCF:

Nominally, the FAM is installed with its frame F3 parallel to XRCF's frame F1. If the SIM simulator were mounted on the 
FAM at the time the FAM is  installed at XRCF, Figure 9 shows the technique that would be used. At a minimum, two angles, 
 (azimuth) and (elevation),  are to be observed with a theodolite viewing the +x face of the alignment cube, and the roll 
angle  assumed zero. If accuracy requires, a second theodolite observation of the alignment cube's +y face returns the roll 
angle .  The figure shows positive and 
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Figure 9. Measuring FAM attitude with respect to XRCF, if SM simulator could be mounted on the FAM in the IC.

Since are small, the order of rotation is unimportant, and the rotation matrix R32 is,  from Wertz, ibid, pg. 764

[    
Eq. 61a R32 = E321(  1 +   

[    and further

[    
Eq. 61b R32   1  

[    

where are in radians. In practice, since the SIM itself is on the FAM at installation time, must be measured using 
the alignment cube mounted on the FAM rear rail, and corrections made for the tilt of the SIM simulator cube with respect to 
the cube on the rail. If '''are the rear rail cube angles with respect to F1, and the angles between of the SIM 
simulator cube with respect to the rear rail cube, then '''. 

Setup and procedure for measuring non-orthogonalities:

Non-orthogonalities TA,TB and TC are measured with aid of  two theodolites, a flat, and a folding mirror. Three setups are 
required, one for y, x and z motion, as shown in Figure 10.
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Figure 10. Theodolite setups for measuring non-orthogonalities TA,TB and TC .

Consider first the setup for measuring y motion non-orthogonalities. Primary theodolite Ty is placed with its standing axis  (its 
vertical axis) placed distance Hy down the y3 axis from the center of the alignment cube on the SI simulator, with the FAM at 

home. Hy should be much larger than the 10" range of possible y motion uAy . Secondary theodolite Tx is similarly placed 

distance Hx down the x axix from the cube. Tx is used only to find the change in the cube's elevation angle, all other variables 

are found with Ty. 

The alignment cube has a reticle engraved on all six faces. We wish to estimate the position of (i.e. point to and focus on) the 
cube's center, but can only observe its faces. When estimating the cube's (linear) position, view the reticle position on both the 
+y and -y faces, and sight its midpoint. Due to refraction and the fact the face does rotate slightly during travel, the apparent 
positon of the -y face will be slightly in error, leading to a slight error in estimating position of the cube's center, which is 
ignored. 

Ty's and Tx's axes are nominally parallel to F3, with the FAM at home, but need not be precisely so. With the FAM at home, 
position Ty so that simultaneously the +y face of the alignment cube is normal to the its line-of-sight (LOS) (i.e. autocollimate 
off the +y face), and the cube center is near the center of the field-of-view (FOV). This requires both translating and rotating 
Ty.

As described in Mathematics of measuring FAM non-orthogonalities, the FAM is first translated distance uAy/2 (as much 

as 5") in the -y direction. Note Ty angles yax and yel (using the sign convention in Figure 10, not Ty's sign convention)  

required to autocollimate the +y face; call them yax and yel . Then sight the cube center, note Ty angles yax and yel ; 

and call them yax and yel .  Position Tx so that it can autocollimate off the +x face of the cube, and record its elevation 

angle xel  (using the sign convention in Figure 10, not Tx's sign convention) . 



Next, move distance uAy (as much as 10") in the +y direction. Use a flat to remember Tx's elevation angle, and move Tx in the

+y direction where it can once again autocollimate off the cube's +x face. Again find the cube's angles yax , yel, and 

xel, and its position  yax and yel . 

The change in cube angles yax , xel , yel = yax , x2el , yel - yax , x1el , yel  are the angles a,e,r of Eqs. 

25, 26 and 27. The change in cube position yax , yel = yax , yel - yax , yel  permit the determination of FAM 

translation v as follows, where the coordinate transformation algebra is omitted.

[vx ] [ yax ( Hy - uAy) ]

Eq. 71 [vy ]  [ uAy ]

[vz ] [ -yel ( Hy - uAy) ]

 
 Note that since the actual displacement vy is not observed (it is only approximated with uAy), TAyy is not observed, and must

be approximated as unity (It could be observed with additional work, using theodolite Tx).

This procedure is repeated a second time for x axis motion; Tx becomes the primary theodolite, and Ty the secondary. Finally 
this procedure is repeated a third time for z axis motion; Tz is the primary theodolite, and Ty the secondary. 


