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Study Goals and Assumptions

Goals:
• Develop a simple parametric model of telescope bandwidth, collecting area and 

resolution
• Use model to explore performance trade-offs vs. mirror design parameters
• Provide the model to the community via an Excel-based tool

Assumptions:
• Single Wolter-Schwarzschild mirror P+S pair (not nested)
• Idealized mirrors (perfect figure, zero assembly errors, etc.)
• Simple iridium coating
• Detectors perfectly curved to match focal surface
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Why Study Just a Single Mirror Shell?

• A great deal of insight can be 
obtained by studying a single 
mirror shell

• Mirror bandwidth and resolution 
are strongly determined by 
outermost mirror

• Mirror area is strongly 
determined by outermost mirror 
(shell area goes like square of 
radius).
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Step 1: Telescope Energy Bandwidth
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Telescope Bandwidth

• Telescope bandwidth is strongly determined by the cutoff energy of 
outermost mirror

• Cutoff energy is determined by the critical angle of x-ray reflection:

𝛼𝛼𝑐𝑐 = 2𝛿𝛿(𝐸𝐸)
where δ is the real part of the mirror coating’s complex refractive 
index n = 1 – δ + iβ

• Mirrors with graze angle above the critical angle reflect x rays with 
energies above the critical energy very poorly
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Atomic Physics Scales δ like 1/E2
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Mirror Critical Angle Scales like 1/E

• The critical angle is the angle of 
total external reflection of x rays

• Mirror reflectivity drops above 
cutoff energy

• Critical angle 𝛼𝛼𝑐𝑐 = 2𝛿𝛿(𝐸𝐸) scales 
like 1/Ec where Ec is cutoff energy
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Mirror Reflectivity Drops above Cutoff Energy
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But Telescope Area Tapers Off Gradually 
Due to Inner Mirrors
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Inner mirrors have higher cutoff energy and thus better high-energy response – but they have less area



Telescope f/# Determines Bandwidth 

Telescope f number f = Z/d where
Z = focal length and d = 2r = mirror diameter. 

Note tan(4α) =  r/Z = 1/2f, where α is mirror graze angle, so

𝛼𝛼 = 1
4
𝑡𝑡𝑡𝑡𝑡𝑡−1 1

2𝑓𝑓
→ same for both telescopes!

4α

Z1

r1

4α

Z2

r2

Telescope 1

Telescope 2

Telescope 1 and Telescope 2 have the 
same f/# and thus the same bandwidth



Solve for Telescope f Number
𝛼𝛼 = 1

4
𝑡𝑡𝑡𝑡𝑡𝑡−1 1

2𝑓𝑓
≈ 1

2𝑓𝑓
from geometry

𝛼𝛼𝑐𝑐 = 2𝛿𝛿 𝐸𝐸 ≈ 𝑐𝑐/𝐸𝐸 from physics

Combine these to obtain

𝑓𝑓 =
1

2 tan 4 2𝛿𝛿
≈

1

2 tan 4 𝑐𝑐
𝐸𝐸𝑐𝑐

≈
𝐸𝐸𝑐𝑐
8𝑐𝑐

where c is a constant and Ec is the cutoff 
energy
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Step 2: Telescope Collecting Area
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Optimize Mirror Collecting Area

Once you have decided on the telescope band width, focal length is the 
only free parameter left that controls mirror collecting area

→  Increase focal length until you run out of money  ←

• On the plus side: Mirror area increases as square of focal length
• On the minus side: Mirror cost increases as square of focal length
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Step 3: Telescope Resolution
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Fundamental Contributors to 
Telescope Resolution

• Wolter-Schwarzschild geometry
• Diffraction
• Build errors (assumed to be zero)
• Scattering (assumed negligible)

16



Wolter-Schwarzschild Mirror Parametrization
RMS geometry blur circle radius (radians):

𝜎𝜎𝐺𝐺 = 0.270 tan2𝜃𝜃
tan 𝛼𝛼

𝐿𝐿
𝑍𝑍

RMS diffraction circle radius (radians):
𝜎𝜎𝐷𝐷 = 𝜆𝜆

2𝐿𝐿 tan 𝛼𝛼

Where:
θ is field of view (FOV) radius
α is mirror graze angle (determined by Ec)
L is mirror length (P only, total length is 2L)
Z is mirror focal length
λ is x-ray wavelength

Speybroeck and Chase, Applied Optics, Vol. 11, No. 2, p. 440 (1972)
Chase and Speybroeck, Applied Optics, Vol. 12, No 5, p. 1042 (1973)
Harvey, J. X-ray Science and Tech., Vol. 3, p. 68 (1991)
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Mirror Top-Level Error Budget

• Geometry term σG

• Diffraction term σD

• Engineering term σE (assumed to be zero)

𝐻𝐻𝐻𝐻𝐻𝐻 = 2 𝜎𝜎𝐺𝐺2 + 𝜎𝜎𝐷𝐷2 + 𝜎𝜎𝐸𝐸2

𝐻𝐻𝐻𝐻𝐻𝐻 = 2 0.270
tan2𝜃𝜃
tan𝛼𝛼

𝐿𝐿
𝑍𝑍

2

+
𝜆𝜆

2𝐿𝐿 tan𝛼𝛼

2

+ 𝜎𝜎𝐸𝐸2
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Optimize Mirror Resolution for Given FOV
• Recall α is fixed by telescope bandwidth requirement

• 𝛼𝛼 ≈ 0.084/𝐸𝐸𝑐𝑐
• Recall focal length Z is fixed by choice of mirror collecting area
• Choose desired FOV angle θ
• Choose target energy E to optimize telescope resolution (note λ = hc/E)

Find optimum mirror length L:
𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻
𝑑𝑑𝐿𝐿

= 0 ⇒ 𝐿𝐿 =
2𝜆𝜆𝜆𝜆

tan𝜃𝜃

𝐻𝐻𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜 = 2 0.27
𝜆𝜆
𝑍𝑍

tan2𝜃𝜃
tan2𝛼𝛼

≈ 12.4𝐸𝐸𝑐𝑐 tan𝜃𝜃
𝜆𝜆
𝑍𝑍

This is the best possible resolution that physics allows 
at the target wavelength, FOV, focal length (i.e., collecting area) and bandwidth
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Best Possible Mirror for 
Nominal Lynx Geometry
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Each energy represents a mirror optimized for a specific energy, 
focal length, energy cutoff and FOV



Nominal Lynx Optimized for 1 keV
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Take away:
• You can make on-axis resolution as 

small as desired by increasing mirror 
length, but at the expense of FOV

• Resolution of <0.1 arc sec can only be 
achieved at the expense of FOV

• A wide-field design (10 arc min) 
struggles to achieve 0.2 arc second

• Practical mirror lengths (>100 mm) 
limit wide-field designs to > 0.25 arc 
sec

• These are physics limits and do not 
consider the very real engineering 
challenges



“Super” Lynx Optimized for 1 keV

• Can we achieve Weisskopf’s “dream telescope?”

• Of course on-axis resolution can be as small as 
desired by increasing mirror length, but only at 
the expense of FOV

• Optimum HPD scales like 𝐸𝐸𝑐𝑐 tan𝜃𝜃 𝜆𝜆
𝑍𝑍

• So the only lever we have is focal length Z, and 
then resolution improves only as 1/𝑍𝑍
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Summary
• Geometry and physics impose fundamental constraints on telescope performance
• Recommend that mission science considerations start from bandwidth, collecting 

area, and resolution/FOV considerations, in that order
• In the deep sub-0.5 arc sec domain, diffraction must be seriously considered in order 

to optimize telescope performance
• FOV considerations are critical in order to optimize telescope performance
• More work is needed to fully understand the trade offs (e.g., ray tracing)
• Room needs to be left in the error budget for the poor engineers!
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