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Presentation Outline

* Introduction

— Lynx optics challenge in context
 Technology

— Substrate fabrication

— Coating

— Mirror alignment and bonding
* Engineering

— Construction of meta-shells

— Structural and thermal design & analysis

— Integration of meta-shell into mirror assembly

 Technology Demo & Mirror Assembly Production
— Tech demo between now and Decadal
— Considerations for mirror assembly production




Lynx Optics Challenge in Context

a e Telescope (1949)

Mirror Area: 19 m? Mirror Area: ~700 m?

Chandra (1999) Lynx (~2035)

Mirror Area: 19 m? Mirror Area: ~600 m?2




* Angular
resolution

e Effective area or
Mass

* Production cost
and schedule

* ~50,000 mirror segments = 15 meta-shells 2 1 mirror assembly
 Thermal pre-collimators, stray light baffles, heaters, etc.
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Mirror Substrate Fabrication

* Material: mono-crystalline silicon
— Free of stress
— Low density: 2.35 g/cm3
— High thermal conductivity: 150 W m K1
— High elastic modulus: 130 - 188 Gpa
— Low thermal expansion: 2.6 ppm/K
— Commercial availability
— Best studied and understood material

* Fabrication process: polishing

— Grinding, lapping, slicing, acid etching, full-aperture
polishing, & sub-aperture polishing , etc.

— Best possible figure and finish quality
— Mass production and robotics to minimize cost




Fabrication Steps

Monocrystalline silicon block Conical form generated Light-weighted substrate

Etched substrate Polished mirror substrate Trimmed mirror substrate



Status of Substrate Fabrication
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Substrate Fabrication Summary

* Can realize any optical design
— Wolter-|
— Wolter-Schwarzschild
— Or any other: equal-curvature, polynomial, etc.

Can make substrates better than Chandra’s
— Better micro-roughness = better-behaving PSF

— Thickness from 0.5 to 1.5mm (cf. Chandra’s 10-20mm)
Use no special or custom equipment

— All equipment are commercial off the shelf.

— All tooling can be made in ordinary machine shops.
High throughput and low cost

— Fabrication process is highly amenable to automation
& mass production



Coating
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Coating

* Coating is an essential part of a strategy to
meet effective area requirements

— A good coating is a necessity, not an option

* Noble metal coating
— Au: Low stress €< —2> Low reflectivity
— Pt: Medium stress €< = Medium reflectivity
— Ir: High stress € - High reflectivity

* Other possibilities

— An iridium layer plus an overcoat of B,C or Al,O,




Effect of 15nm Pt Coating
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Solutions being Pursued at GSFC &

* Balance front and back
— Investigating Pt coating now
— If successful with Pt, will investigate Ir

* Balance thin-film stress on the front with SiO,
stress on the back

— Coatings typically have compressive stress
— Si0, also has compressive stress. Its growth can be
controlled to an accuracy of 1 nm.

e Polish a figure error in the substrate that will
cancel distortion caused by coating stress, if
the effect of coating stress is highly
repeatable & stable.
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Approach to Alignment & Bonding &

Use kinematic mount to minimize/eliminate
distortion to mirror segments

Use finite element analysis to optimize
locations of supports

Use epoxy as adhesive only, not as a filler of
any space that is not precisely controlled

Use gravity, the most repeatable force, as
the nesting force



Minimal Constraints &

* Three spacers or posts fully determine

the orientation of a flat mirror:
— pitch, yaw, & x by gravity

— roll, y, and z by friction
* Four spacers or posts fully determine
the orientation of an X-ray mirror:
— pitch, yaw, x, and y by gravity
— z and roll by friction

* Use vibration of optimal frequency
and amplitude to overcome friction

X
Z 2
YA



Proof of Concept &

* Placement repeatability
— The same mirror from placement to placement
— From one mirror to another of the same prescription

— Stability over long periods of time: ~10 hours

* Precision machining of posts
— Current precision at 25 nm, limited by metrology
— Enables sub-arcsecond mirrror alignment

* Bonding mirror with epoxy
— Preserves alignment: no indication of alighment shift

— Preserves figure: only localized distortions due to
epoxy cure stress



Proof of Concept Module
‘ Accomplished as of May 2017

Single pair of mirrors aligned, bonded,
and X-ray tested.

Expected to be accomplished
by December 2017

Multiple pairs of mirrors aligned, bonded,
and X-ray tested.
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X-ray Test Result
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Engineering:
Structural, Thermal, & Systems

McClelland Bonafede Solly
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Meta-Shell Approach

—

Structural Shell

Meta-shell integrates many four spacer
mounted segments

— Interlocking layers of mirror segments
bonded onto a central structural shell
(silicon)

— Mirrors are cantilevered off structural shell
similar to NUSTAR ,

— Brick-like buildup spreads the load
Once complete, meta-shell is similar to a MirorSegment

full shell with an order of magnitude more
collecting area

— Structurally stiff (all silicon) ,
] ] Spacer Height
— Rotationally symmetric casirement
.y . aser
— Insensitive to tilt

— Leverage Chandra and XM M-Newton
heritage

Integrated on a precision air bearing GSE End Plate ———
— Creates an optical axis reference Air Bearing Spindle
— Post heights determined by Hartmann test
— Bonded in distortion 0.05” HPD

Structural Shell il -/Spacers
<" O FirstLayer/Shell
y ‘/\ Spacer Aligner
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Mirror Assembly

i 1 eta-shell #
Multiple concentric meta-shells co- Metarshell 1™~

aligned and mounted into a carrier
structure
— Similar to Chandra (CAP) and XM M-
Newton (Spider)
— Aluminum structure (or CFRP)

— Co-align and bond meta-shells using

Chandra techniques (CDA with retro- —
reflecting flat, etc) Carrier

— Chandra-like flexure mount allows for
mechanical isolation

Heated stray-light / thermal baffles
integral to carrier structure (Aluminum)
Mount within Interface Ring that
provides interface to telescope/
spacecraft (Aluminum)

Un-heated thermal baffles (G10)

o Meta-shell #15

structure
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Carrier structure
with heated baffles

Un-heated Interface Ring
thermal baffle
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Structural Analysis

* Analysis and test show weak point W

is innermost bond
* Bond stress is determined by: o s / 1
— Bond / spacer diameter \\r( *,J |
— Number of segments around the | | /
circumference, i.e., number of bonds l

Mirror Segment

per layer
— Number of layers
e Mathematic model of bond stress

300mm Diameter Meta-Shell

developed 3
— Determines feasible meta-shell £
designs £

— Verified by detail FEA and coupon g
tests £

 Deterministic method to derive all
meta-shell designh parameters
25




Developed conservative preliminary
requirements

— Quasi-static design loads for IXO CLA with 2.0 |
MUF

— Random loads from GEVS

— Shock loads from Falcon 9
Cantilevered mass prototype

— Dummy mass simulates layers of mirrors

— Single silicon segment with four spacer bonds

— Survived required random vibration

— Survived required shock (200 g)

— Silicon is strong (if treated properly), has
good damping, and bonds well

Meta-shell mechanical mock-up
— Aluminum and glass meta-shell
— Bonded flexures
— 3 layers (54 mirrors, 432 bonds)
— Survived required random vibration
— Survived required quasi-static load (12.3 g)




Thermal Control

* Follow Chandra approach
— Optics operate at 20°C (baseline, colder possible)

— Heat lost to cold space is replaced by heaters
surrounding the optical cavity

— View to cold space is limited by thermal baffle
vanes (heated and un-heated)

* Design verified by preliminary Structural
Thermal Optical Performance (STOP) analysis

— Thermal model predicts temperatures

— Temperatures mapped to structural FEM :

— Distortion predictions ray-traced y
* Low CTE and high thermal conductivity of L

Silicon result in low thermal sensitivity

— Minimal gradients over a mirror segment

— Current result 0.16” HPD, room for optimization

— Best STOP result from IXO 6.6” HPD with glass

20.003239

20.00298
20.002721
20.002463
20.002204

20.001945

| 20.001687
20001428
20001169




Summary

Meta-shell approach addresses
X-ray mirror needs for Lynx

— Advantages of full shell optics but
with an order of magnitude more

collecting area

Preliminary structural, thermal,
and optical analysis completed
to mature the system design

— Shows 0.5” mission is feasible

Prototype load testing
demonstrates the meta-shells

are robust

Development continues: design,

analysis, testing

Structural Shell

Secondary
Mimors =

Primary
Mirrors

Spider—>-
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A

Technology Demonstration and
Production of a Mirror Assembly



Problem and Solution &

* Lynx’s mirror assembly presents a significant
challenge

— Technical: angular resolution & effective area & mass
— Schedule: production time must be < 10 yrs
— Cost: total assembly cost ~S500M (RY)

 The meta-shell approach offers a potentially
very attractive solution

— Highly probability to meet angular resolution and
effective area requirements

— Uses COTS and traditional techniques, equipment, etc.

— Highly amenable to compartmentalization and mass
production

— Highly amenable to cost and schedule risk reduction



Between Now and Decadal Time &

 Empirically demonstrate that mirror segments meeting
(or close to meeting) requirements can be made

— Repeatedly (high yield),
— Quickly (production rate), and
— Cost effectively
* Build and test small mirror modules
— Basic alignment & bonding procedure is sound & efficient
— They meet performance and environmental requirements

* Build and test reasonably-defined meta-shells

— Meet both performance and environmental tests
— Reach TRL-5 by 2020

— Show a clear path to TRL-6 once the observatory is defined
with sufficient fidelity



Mirror Assembly Production (1/2) &

~50,000 mirror segments
- ~15 meta-shells
- 1 mirror assembly

~8 mirror fabricators
- ~4 meta-shell makers
- 1 integrator/tester

Distributed production = Competition = Cost/Schedule risk reduction
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Mirror Assembly Production (2/2) &

* Technology team: Technical oversight,
Prompt identification of and solution to
technical problems

* Prime contractor: Overall responsibility,
Systems engineering, I&T, Selection of sub-
contractors

* Meta-shell sub-contractors: production, and
delivery of meta-shells

* Mirror fabrication sub-contractors:
production and delivery of mirror segments



Acknowledgements &

This work has been funded by NASA
through
ROSES/SAT and ROSES/APRA.



